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Stress spaces and stress paths 
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Abs t rac t - -The  stress history, or stress path,  of a rock is determined by burial and lithification, regional tectonics, 
local structural development ,  pore fluid pressure variations, etc. The cumulative effect of  these influences can 
produce stress conditions that are not readily anticipated, and which can be quite variable across a single 
geological structure. A complex stress history can be more clearly represented in such alternative presentat ions 
as J space, p~q space and a space than in the familiar Mohr  space format.  Stress state and stress history 
information is commonly  linked to natural deformation via critical state models and deformation mechanism 
maps,  which are used to assess brittle and ductile deformation mechanisms,  respectively. J-T space may be used 
as a three-dimensional  deformation mechanism space, wherein both brittlc and ductile deformation may be 
simultaneously related to the s t ress- temperature  path of a rock. 

INTRODUCTION STRESS SPACES 

A ROCK is the product of a history of deposition or 
emplacement, lithification, diagenesis, metamorphism 
and deformation. As geoscientists, we aspire both to 
describe the rock in its present state and to assess its 
history. The investigations of the structural geologist 
focus primarily on the history and the products of the 
deformation. Display formats to depict strain or defor- 
mation paths (e.g. Flinn 1962) and P - T - t  paths have 
proven to be extremely valuable for understanding and 
communicating these findings. Stress path analysis, 
which is the focus of this article, is another important 
vehicle for visualizing and assessing factors affecting the 
deformational history. 

The deformation of a rock is strongly influenced, 
sometimes controlled, by the state of stress and the 
stress history. The Mohr diagram is a graphical display 
commonly used by geoscientists for discussions of stress 
state. This display is very useful for the geometric 
evaluation of a specific stress state, but it is quite awk- 
ward for describing or discussing stress history. Though 
there are a number of alternative graphical displays that 
are well suited for analysis of stress history (e.g. Jaeger 
& Cook 1969), most have received only limited attention 
by the geological community (e.g. Jones & Addis 1986). 
However, the insight that can be gained from certain of 
these alternative stress diagrams should warrant a 
broader utilization. 

In the following, the principal graphical formats for 
stress analysis are described and compared: Mohr space, 
J space, p - q  space and a space (Fig. 1). Stress history 
paths (or, simply, stress paths) for various geological 
scenarios are then presented in the different formats. 
Finally, a possible coupling of these stress displays with 
deformation mechanism maps, to link stress paths with 
observable deformational features, is considered. 

The familiar Mohr circle display may be used for 
either stress or strain. For stress analysis, Mohr space is a 
two-dimensional space with normal stress (On) and shear 
stress (r) as the abscissa and ordinate, respectively (Fig. 
la). A general state of stress is represented by three 
(semi-)circles, connected along the On-axis at the values 
of the principal stress magnitudes. 

J space, or stress-invariant space, is a two-dimensional 
space whose abscissa and ordinate are J1 and ~22, 
respectively (Fig. lb), where (using tensor notation): 

Jl  = o i i  (1) 

~22-.--_ [lot  Ot~ 1/2 ~,2 ij ij) (2) 
and 

a~j = aij - bij akk /3 .  (3) 

J1 and J~ are stress invariants (J1 is the first invariant of 
stress and J~ is the second invariant of deviatoric stress). 
Symmetric second-rank tensors (such as stress and 
strain) have three invariant values derived from the 
various components of the tensor. The values of the 
individual tensor components will, in general, change as 
the reference co-ordinate system is rotated, but the 
invariant values do not. For comparison, a vector (which 
is a first-rank tensor) has one invariant value, viz., the 
vector magnitude. When expressed in terms of the 
principal stress values, the J space co-ordinates are: 

J1 = ° l  + 02 + 03 (4) 

and 

V ~ 2  = {~[(O 1 --  0"2) 2 + (O 1 --  O3) 2 + ( 0  2 --  O3)21} 1/2, ( 5 )  

A particular state of stress plots as a point in J space. 
Soil mechanics data are commonly presented in p - q  

space (Fig. lc; e.g. Jones & Addis 1986, Gens & Potts 
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1988), which (generally) is defined by co-ordinate axes 
that are intermediate between those of Mohr space and J 
space: 

p = (01 + 0 2 + 0"3)/3 = J l / 3  (6) 

q = al - 0 3 -  (7) 

A particular state of stress also plots as a point in p-q 
space. 

The co-ordinate axes of three-dimensional a space are 
simply the principal stress magnitudes (Fig. ld).  In 0 
space, any particular state of stress again plots as a point. 
Note that representation quadrics, e.g. the stress ellip- 
soid, are sometimes used for the graphic display or 
analysis of tensor values (e.g. Nye 1972). Though the co- 
ordinate axes defining the stress ellipsoid are the princi- 
pal stresses, it is a distinctly different presentation from 
the 0 space described here. 

None of these four stress space displays have a direct 
linkage with the physical (x, y, z) co-ordinate system. 
However,  the Mohr space format does allow a determi- 
nation of the resolved normal and shear stresses on any 

plane in physical space, as referenced to the principal 
stress directions. Neither J space, p-q space nor o space 
afford this resolution of the stress values. It is probably 
this particular capability that has led to the wide usage of 
the Mohr space format by geologists. 

J space is essentially a two-dimensional rendition of a 
space. The Jl-axis is defined by k/f_, = 0, which is equiv- 
alent to 01 = 02 = o3. This relationship defines a line 
(the hydrostat, or H) in a space. Any point or line in J 
space defines a circle or surface of revolution about H, 
respectively, in a space (Fig. 20). The p-axis ofp-q space 
also coincides with It in a space. A particular point in p -  
q space describes a hexagon of triclinic symmetry (Fig. 
2a). It is evident from these relationships that a point in 
either p-q space or J space represents a family of stress 
states rather than a unique set of principal stress values. 

Critical state models (failure criteria) used to predict 
the onset of brittle failure or plastic yield are somewhat 
dictated by the stress space display being used. For rock 
mechanics and structural geology applications, the Cou- 
lomb failure criterion (Coulomb 1776) is used in Mohr 
space, the Hvorslev surface (Hvorslev 1937) in p-q 
space, and the Drucker-Prager  (Drucker & Prager 
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Fig. 1. Various graphic displays for stress analysis: (a) Mohr space; 
(b) J space, or stress invariant space; (c) p -q  space; and (d) o space. In 
Mohr space, a general state of stress is represented by three circles (or 
semicircles). In the other graphics, any particular state of stress is 

represented by a point. 
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Fig. 2. Relationship between stress data viewed in cr space vs J space 
and p - q  space. (a) A single point in the two-dimensional stress spaces 
(see Fig. 1) describes a circle or a polygon in the three-dimensional a 
space. (b) Failure envelopes for geomaterials which display as single 
lines in the two-dimensional stress spaces (see Fig. 1), form circular or 

prismatic cones in a space. 
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1952) failure criterion in J space. These several failure 
criteria, and their non-linear variants, define failure 
surfaces of basically the same shape in the respective 
two-dimensional stress spaces (cf. Figs. la-c) ,  but they 
coincide only at a select few points in o space (Fig. 2b). 
The distinction between these failure criteria is dis- 
cussed in more detail, below, in the section on defor- 
mation mechanism space. 

STRESS PATHS 

The relationships between the various stress space 
displays may be illustrated by considering a relatively 
simple stress history. Progressive changes in the state of 
stress will plot as a series of points in J space, p-q  space 
and o- space, defining a line meandering through the 
different stress spaces. This is the stress path. The 
corresponding stress changes plot as a series of triple 
semi-circles in Mohr space, In the following I describe a 
rock that is: (a) buried to 2 km in a subsiding basin 
unaffected by any tectonic stresses, then (b) subjected to 
a regional horizontal contraction (plane strain) followed 
by (c) an additional 1 km burial, with no additional 
tectonic loading, and then (d) affected by bending 
stresses during the incipient phases of plane-strain fold- 
ing. 

The sign convention used throughout this article is + 
for compression, and all stress terms refer to the effec- 
tive stress. For this initial example, I assume linear 
elastic behavior and normal pore pressures, and ignore 
thermal effects, in order to keep the calculations and 
concepts simple. In all of the examples, one of the 
principal stress axes is vertical and the other two lie in 
the horizontal plane. This allows the stress axes for o- 
space to be referenced to these particular physical direc- 
tions, which is convenient for the visualization of the 
stress path. It should be recognized, though, that this is 
not the general case, and o- space analysis normally does 
not permit this physical referencing. 

During burial (and subsequently), the vertical stress 
(o-v) acting on the rock is the overburden stress (the 
weight of the overburden less the pore pressure). The 
horizontal stresses (oh~ and Oh2 ) associated with burial 
are calculated using the assumption of uniaxial strain, 
i.e. the assumption that the body of rock being con- 
sidered undergoes no lateral contraction or extension 
during burial: 

o-hl = o-h2 ~" O'v, (8 )  
1 - - v  

where v is Poisson's ratio (in this example, v = 0.35 is 
used in the initial burial calculation, and v = 0.2 is used 
in the subsequent steps). 

For progressive burial, the stress history is displayed 
in Mohr space as a series of circles that become larger 
and move to the right as the depth of burial increases 
(Fig. 3a). During this burial phase, the horizontal princi- 
pal stresses are equal (i.e. o-h1 = o-h2), so that the stress at 

any instant in the burial history plots as a single circle in 
Mohr space. This burial stress history plots as a linear 
sequence of points (forming a straight line) in o space, J 
space and p-q  space (Figs. 4a-c). 

During the phase of regional horizontal contraction, 
the rock is assumed to remain at the same burial depth. 
The vertical stress is still determined directly from the 
weight of overburden. Because there is no change in the 
amount of overburden, there will be no incremental 
variation (indicated by a A preceding the referenced 
parameter) in the vertical stress: 

±o,, = 0. (9) 

However, there will be an increase in both horizontal 
principal stresses. Equation (9) and the indication that 
the deformation is plane-strain contraction allows the 
incremental variations in the horizontal principal 
stresses to be related: 

AOh2 = VAOhl.  (10) 

Because elastic behavior is assumed, no relaxation of 
existing stresses occurs, and the stresses arising from 
each phase of the burial and deformation are directly 
superposed. In Mohr space, the differential increase of 
the two horizontal stresses produces a series of triple 
Mohr circles that shift to the right and become pro- 
gressively larger (Fig. 3b). In o- space, the stress history 
of this regional contraction is, again, simply a straight 
line (Fig. 4a), but this same stress history plots as a 
smoothly varying curve in J space (Fig. 4b) and as a 
piecewise linear curve in p-q  space (Fig. 4c). The nick 
points in the p-q  space stress path occur where the 
relative magnitudes of the principal stress axes change. 

The stress changes associated with the additional 
phase of burial are governed by the relationships of 
equation (8). The progressive increase in the principal 
stress magnitudes is described by a sequence of triple 
circles in Mohr space (Fig. 3c), a straight line in o- space 
(Fig. 4a), a curved line in J space (Fig. 4b), and a 
piecewise linear curve in p-q  space (Fig. 4c). 

Folding of the strata will produce extension in the 
outer arc of the fold and contraction in the inner arc. For 
both cases, the plane-strain assumption produces the 
relationship between the horizontal stresses shown in 
equation (10). Because burial depth is not changing 
during this folding event, there is no change in Ov 
(equation 9). In Mohr space, the contraction in the inner 
arc of the fold produces expanding triple circles moving 
progressively to the right (Fig. 3d), while the outer arc 
extension creates a series of circles shifting to the left 
(Fig. 3e). The stress paths for the inner and outer arc of 
the fold are, again, straight lines in o- space (Fig. 4a), 
smooth curves in J space (Fig. 4b) and piecewise linear 
curves in p-q  space (Fig. 4c). 

From this simple case study, it can be seen that the 
complete stress history can be very conveniently dis- 
played and read using the stress paths in either J space or 
p-q  space. Although the stress path is probably most 
readily understood in the o-space format, this display can 
be awkward because it is three-dimensional. In contrast, 
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Fig. 3. Mohr space expression of the stress history of a rock (see text for discussion) during (a) uniaxial-strain burial, (b) 
regional plane-strain contraction, (c) additional burial and (d & e) plane-strain folding. M-C is the Mohr-Coulomb failure 
envelope. In each diagram, the medium-weight circles represent the stress state at the initiation of the described loading 
step, the heavy-weight circles represent the final stress conditions for the step, and the light-weight circles represent 
intermediate portions of the loading path. The principal stress designations on the On axes refer to the final stress conditions 

(heavy circles) of each loading sequencc. 

the Mohr space format is conspicuously unsuitable for 
stress history analysis. Where stress histories are being 
investigated, Mohr space is most useful as an adjunct to 
one of the other stress space presentations, e.g. for the 
resolution of the stresses on particular surfaces or for 
anticipating the orientation of faults or fractures. 

This example has provided a comparative illustration 
of the different stress space formats. Only a space and J 
space will be used in the subsequent stress path dis- 
cussions. 

Burial stress paths 

The assumption of uniaxial elastic strain for determi- 
nation of the burial segments of the stress path, used in 
the above example, represents one extreme of the spec- 
trum of possible burial stress paths (Fig. 5; note that the 
uniaxial-strain stress path is quite sensitive to the value 
of v). The other extreme is represented by lithostatic 
behavior, i.e. ~rht = (Yh2 = Ov, which produces a stress 
path along H in o space and along the Jl-axis in J space 
(Fig. 5). The lithostatic stress path is probably closely 
approached by clay-rich sediments during their initial 
phases of burial (i.e. a material that is quite inelastic and 
that will not support a significant differential stress), 
whereas a uniaxial elastic strain response would be 
expected for a rock that is well lithified at the time of 
deposition, such as a basalt flow. Most other rock types 
probably experience burial stress paths intermediate 
between these extremes, as suggested by the heavy 
dashed line in the two stress spaces (Fig. 5). Any long- 
term viscous or plastic creep that accommodates a relax- 

ation of the differential stress produced by burial, or 
other factors, will follow a stress path headed towards 
the lithostatic burial condition (dotted arrow in Fig. 5). 

Regional tectonics 

The stress paths for the subsidence and uplift com- 
ponents of orogeny may be determined using the con- 
cepts and equations for the burial stress path, as pre- 
sented above. In the following discussion, only the 'non- 
burial' effects of the regional tectonics are considered, 
i.e. the stress paths are derived assuming the rock 
remains at a constant burial depth during the tectonism. 
Under this assumption, the vertical stress is unaltered by 
the regional tectonics. Thus, the stress paths, in o space, 
all stay in the plane of ov -- k (Fig. 6a), where k is a 
constant determined by burial depth and pore pressure. 
It is possible that the principal stress axes may be rotated 
out of the horizontal plane and the vertical direction by 
the tectonic deformation, but such rotations are more 
directly associated with local structural development 
than with the regional effects. 

Regional contraction or regional extension in one 
direction will alter the horizontal stress in the direction 
normal to as well as parallel to contraction-extension 
direction. For plane strain and linear elastic behavior, 
the incremental changes in the principal horizontal tec- 
tonic stresses are governed by equation (10). Purely 
strike-slip tectonics produces simple shear in the hori- 
zontal plane, which yields the relationship 

Aoh2 = --Aoh,. (11) 
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Fig. 4. Stress history of a rock (see text for discussion) as depicted by 
stress paths in (a) (7 space, (b) J space and (c) p-q space. (In all the (7 
space diagrams, proj. is the projection of the stress path onto the 

o h r-Oh2 plane. D-P is Drucker-Prager failure surface.) 

Transpression and transtension stress paths lie between 
these end-member paths (Fig. 6). 

The path to the failure envelope is much shorter for 
the extensional setting than it is for contraction (Fig. 
6b). Note that the stress path distances to the failure 
envelope for the strike-slip and transtensive settings are 
also relatively short (Fig. 6b). The distance to the failure 
envelope in these various tectonic settings is dominantly 
controlled by the dependence of the failure envelope on 
mean stress. Though not elaborated here, variations in 
the burial stress path (see Fig. 5) will result in an 
accompanying change in the location and the shape of 
the subsequent 'tectonic' stress path. Each segment of 
the stress path, and the resultant deformation, is 
influenced by the complete stress history. 

Pore pressure effects 

It is well established that changes in pore pressure 
(Pp) in a permeable rock will change the effective stress 
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Fig. 5. Stress path in (a) cr space and (b) J space for various burial 

scenarios. See text for discussion. 
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(Hubbert & Rubey 1959, Handin et al. 1963). It is 
commonly assumed that the Pp changes will affect all of 
the principal stress magnitudes equally (e.g. Handin et 
al. 1963). This will be referenced, in the following, as the 
assumption of uniform change in the normal stress 
magnitudes (uniform AOn). In Mohr space, uniform AOn 
will shift the position of the center of the Mohr circle, but 
the diameter (i.e. the differential stress) will be 
unchanged. In o space, uniform Aon produces an effec- 
tive stress path that is parallel to H (Fig. 7a). In J space, 
uniform A ~  changes Jl but not X/f2, so the stress path is 
parallel to J1, and goes towards the failure envelope for 
increases in Pp and away from the failure envelope for 
decreases in Pp (Fig. 7b). 

The uniform AOn assumption is appropriate for a 
porous body subjected to force boundary conditions 
(such as a rock in a conventional triaxial testing appar- 
atus). If, however, displacement or mixed boundary 
conditions are in effect, changes in differential stress 
(and ~/~2) may occur in association with App. For a body 
of rock in the Earth's crust, where lateral movement is 
restricted by the surrounding rock, the pore pressure 
effects may be better approximated using the stress 
relationships for uniaxial strain (Higgs & Bradley 1986). 
For uniaxial strain and an elastic material response, the 
effective stress path for APp will be governed by the 
relationships of equation (8) and will, thus, be parallel to 
the uniaxial strain burial stress path (Fig. 7a). (If, more 
appropriately, the full equations for a thermoporoelastic 
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Fig. 7. Stress paths in (a) o space and (b) J space produced by changes 
in pore pressure, superposed on stress states representing extensional 
and convergent tectonic settings. Stress path directions associated with 
increases in pore pressure denoted by + Pp; decreases in pore pressure 
produce stress paths labeled - P p .  See text for discussion of uniform 

A~r, and uniaxial strain paths. 

medium are used, a slight difference will result when the 
thermal effects are considered, which impact the burial 
stress path but not the App stress path; Higgs & Bradley 
1986.) As viewed in J space, the configuration of the App 
stress path (for uniaxial strain) is quite dependent on the 
state of stress at the inception of the Pp changes (Fig. 
7b). In general, increases in Pp will still produce a stress 
path that goes toward the failure envelope. 

Rock  mechanics stress paths 

Our understanding of natural rock deformation has 
been greatly advanced by studies of the mechanical and 
deformational behavior of rocks using high-pressure 
rock mechanics testing apparatus. Most commonly, 
these tests are conducted on cylindrical samples, with a 
uniform and constant stress applied perpendicular to the 
sample axis (the confining pressure, Pc) while the load 
applied parallel to the sample axis (P,) is varied, thereby 
creating a differential stress. In such tests, nominally 
termed triaxiai compression and extension tests, P,, is 
greater or less than Pc, respectively. The stress paths 
achieved in these test conditions are restricted, in o 
space, to the plane containing Pa and H (Fig. 8). 

Compared to the variety of possible stress paths that 
may occur in the natural environment, as illustrated by 
the preceding examples, these triaxial tests provide a 
relatively restricted assessment of deformation con- 
ditions. Rock mechanicists have long sought to expand 
the range of testable stress states, using, for example, 
torsion testing apparatus (e.g. Handin et al. 1960) or flat 
jacks on all sides of a cubic sample (e.g. Reches & 
Dieterich 1983). These specialized test conditions are 
technically quite difficult, especially if temperature or Pp 
are also varied. As a consequence, there exists only a 
relatively modest amount of rock mechanics infor- 
mation that does not follow the stress paths of the 
nominal triaxial tests. This point is made here because it 
is important to realize that the data used to create failure 
envelopes and deformation mechanism maps, the sub- 
jects of the following section, simply do not represent 
many areas and paths in o space, or in the other stress 
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Fig. 8. Stress paths in ~r space for conventional  'nominal '  triaxial rock 
mechanics tests. C o is the stress path  for an unconfined (Pc = I a tm.)  or  

uniaxial stress test. 
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spaces. Consequently, the configuration of failure envel- 
opes and strain rate gradients, presented below and in 
other literature, should not be considered highly con- 
strained in any stress space. 

D E F O R M A T I O N  M E C H A N I S M  SPACE 

Stress histories and stress states are useful to the 
geologist only to the extent that they can be related to 
geological deformation processes. This linkage is pro- 
vided by critical state models (failure envelopes, e.g. 
Coulomb 1776, Drucker & Prager 1952) and defor- 
mation mechanism maps (e.g. Rutter 1976, McCiay 
1977, Chester 1989). In most deformational environ- 
ments occurring at upper to middle crustal levels, both 
'ductile' (used here to indicate temperature and strain- 
rate dependent processes) and 'brittle' (relatively 
insensitive to temperature and strain rate) deformation 
processes occur. 

The relative contributions of these various processes 
to the total deformation will vary as a function of the 
state conditions and the lithologies involved. Failure 
envelopes, which anticipate brittle deformation, are 
usually expressed strictly in terms of stress. Deformation 
mechanism maps, which primarily address ductile pro- 
cesses, are commonly presented in terms of temperature 
and some stress factor. Adding a temperature (T) axis to 
one of the two-dimensional stress displays provides a 
format for simultaneously relating both brittle and duc- 
tile deformation processes to the stress-temperature 
path. This concept is illustrated, below, for limestone. 
However, before coupling the two-dimensional stress 
spaces with temperature, it is appropriate to review the 
characteristics and limitations of the failure criteria used 
in the various two-dimensional stress spaces. 

The failure envelope 

In Mohr space, the failure envelope (see Fig. 1) has 
the functional form: 

Coulomb, etc.) criterion has no dependence on 02, and 
the Hvorslev surface has an intermediate dependency on 
o2. 

These failure criteria are linear relationships for the 
respective stress spaces. Empirically determined failure 
envelopes for specific rocks or rock types are usually 
non-linear (e.g. Jaeger & Cook 1969). In either their 
linear or non-linear manifestations, these various failure 
envelopes have comparable geometries in their respect- 
ive two-dimensional stress space formats (see Fig. 1), 
but they define quite different failure surfaces in o space 
(Fig. 9). The Drucker-Prager failure envelope is a 
surface of revolution about It, i.e. a conical surface in o 
space. The Coulomb failure envelope and the Hvorslev 
surface form identical, triclinically symmetric, prismatic 
surfaces. 

If the conical and prismatic surfaces are established to 
coincide for triaxial compression test data (02 = a3), 
then a major deviation between the surfaces occurs at 
o2 = a~, which is the stress condition obtained in rock 
mechanics triaxial extension tests (Fig. 9a). The actual 
failure strength of rocks derived from these extension 
tests falls between these two failure criteria (correspond- 
ing triaxial compression and extension test data are 
shown as solid squares in Fig. 9a). That is, for failure 
envelopes based on compressional test data, the 
(Mohr-)Coulomb and Hvorslev failure criteria will 
underestimate the failure strength in extension and the 

(~a 
compression test I Mohr-Coulomb & 

stress ~ v o r s l e v  surfaces 
Drucker-Prager 

extension t e S l ~ a i l u r  e sudace 
stress state 

a 

(]c (]b 

JI=IOOOMPa 

r = O" n tan ~ + r 0, (12) 

where tan ~ is termed the coefficient of internal friction 
and ro is the r-axis intercept of the failure envelope. This 
is the Coulomb failure criterion (Coulomb 1776). The 
counterpart in p-q  space is the Hvorslev surface (Hvors- 
lev 1937): 

q = Mp + B, (13) 

where M is the slope and B is the q-axis intercept. In J 
space, the failure envelope has the form: 

X~2 = a Jl + ay, (14) 

where a is the slope of the envelope and O'y is the yield 
stress for the condition J1 = 0. This is the Drucker- 
Prager failure criterion (Drucker & Prager 1952). The 
Drucker-Prager criterion has an explicit dependence on 
all three principal stress values, the Coulomb (or Mohr- 

13 a 

o~ ~° n 

tensile ~ (~b region 

Fig. 9. Configuration of various failure surfaces in a space (a) in a 
plane perpendicular to H (i.e. in the deviatoric plane) and (b) in a 
perspective view. Relative position of the solid squares in (a) are based 
on test data of  Solenhofen limestone given in Heard (1960). The 
dashed curve suggests the form of a more accurate general failure 

surface. 
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Drucker-Prager failure criteria will overestimate the 
extensional strength (e.g. Heard 1968). A number of 
alternative failure criteria have been proposed that more 
closely approximate three-dimensional critical state 
characteristics (e.g. the dashed curve in Fig. 9a; see 
Gens & Potts 1988). These alternative failure criteria, 
which do not collapse into two-dimensional stress space 
formats, have received more attention from soil mecha- 
nicists than from structural geologists. 

There are also other aspects of rock deformation that 
cannot be fully appreciated in the two-dimensional 
stress presentations. One example is the transition in 
brittle deformation from shear fracture to tensile frac- 
ture, which occurs, approximately, as the least principal 
stress shifts from positive to negative (e.g. Griggs & 
Handin 1960). In a space, this change in sign of one of 
the principal stresses occurs when the failure surface 
crosses any one of the three planes defined by the 
principal stress axes (i.e. the Oa--Ob plane, the aa-Cr~ 
plane or the Ob--O~ plane, Fig. 9). On the Drucker-  
Prager failure envelope, this transition from the com- 
pressional stress field into the tensile field is scalloped- 
shaped (Fig. 9b), and is not symmetric about It (or J1). 
The nominal 'brittle-ductile transition' of rock mech- 
anics tests (which is a function of P~ and is not the same 
brittle-ductile distinction defined above) empirically 
follows a similarly shaped path on the failure surface 
(Fig. 9b, e.g. data from Heard 1968). Thus, neither the 
transition into the tensile stress regime nor the brittle- 
ductile transition can be delineated as discrete points on 
the Drucker-Prager envelope in J space (and similarly 
for the Hvorslev surface in p - q  space). 

The two-dimensional stress space formats provide a 
visual and conceptual convenience, but a certain amount 
of information is lost or overlooked. The above de- 
scribed limitations are not meant to dissuade use of these 
two-dimensional graphical displays, but rather to illus- 
trate that they all have similar shortcomings. The follow- 
ing discussion of J - T  space is made with clear cogni- 
zance, but without further discussion, of the ambiguities 
embedded in two-dimensional stress space presen- 
tations. 

J -T deformation mechanism space 

A prototype J - T  space is formulated for a limestone 
with a grain size of - 1 0 g m  (Fig. 10). The brittle failure 
envelope is based on rock mechanics data for the ex- 
tremely fine-grained Solenhofen limestone (Heard 
1960). The failure surface has been reduced 20% (in 
terms of X~2) in an attempt to represent the envelope 
appropriate for geological strain rates (e.g. Costin 
1987). The data for dislocation and Coble creep and 
diffusive mass transfer are derived from the deformation 
mechanism maps of Rutter (1976), for a grain size of 10 
t~m, using a shear modulus for calcite of 23 GPa (Birch 
1966). Data for twin gliding come from Rowe & Rutter 
(1990). 

Flow laws for dislocation and Coble creep (Rutter 
1976) and twin gliding (Friedman 1964) are generally 

J-T space 
limestone 

grain size = .01mm . ._~ 

w ~ e '~0~ 

| / 

brittle failure 

- -  pressure solution 

. . . . . . .  dislocation creep / glide 

. . . . . . .  twin gliding 

4 j ~  ............. Coble creep 

200 t 
r extension fracture 

MPa • ~ ~ 10_8/$ Io-IO/s 
= . . . . .   00!   .104- 

,0 9 ;s > , , . 2 , , 2 , ,  . 2 ; > X . . S  
=10 -19/S " "" : 

J l =  200 MPa ] l°_. .~s~"-~"~".~".~_~2..  . . . .  
. . . .  ] j ~ - - ~ .  [ / 

200 400 

b degrees C. 

Fig. 10. J -T  deformat ion mechanism space for  a l imestone with a 
grain size of 10,um (see text for discussion). (a) Perspective display of 
J-Tspace with slices in the J l - ~ / ~  plane shown for temperatures of 50 

and 400°C and (b) a slice in the T-X/~ plane for J, = 200 MPa. 

formulated to be independent of normal or mean stress. 
A similar independence is postulated for pressure solu- 
tion (diffusive mass transfer) mechanisms (Rutter 1976), 
though the literature is not consistent on this point. 
Consequently, in any slice through the J - T  space per- 
pendicular to T (Fig. 10a), only the brittle deformation 
envelope shows a variation with J,.  In a slice perpen- 
dicular to Jl (e.g. Fig. 10b), dislocation creep/glide, 
Coble creep and pressure solution all show a marked 
variability with T. In this X/J~2'-T plane, twin gliding is 
independent of T (Rowe & Rutter 1990), and brittle 
failure shows only a marginal dependence on T. 

Though strain-rate-dependent deformational pro- 
cesses were not considered in the above discussions of 
stress history, they will influence the stress path. Specifi- 
cally, they will establish limits to the permissible stress 
states for a specified lithology and strain rate. For 
example, if the deformation is occurring at a strain rate 
(k) of 10 8 s - i ,  the stress can increase in terms of X/~ 
until the stress path intersects either the brittle failure 
surface or a limiting k gradient (in this case 10 -s s 1) for 
one of the k-dependent deformation mechanisms. In 
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order for ~ to exceed this limiting k gradient, the 
would have to increase. For T =  50°C, the limiting 
deformation mechanism is pressure solution (see Fig. 
10a). At this temperature,  if J~ < ~350 MPa, the stress 
path will intersect the brittle failure envelope before it 
hits any limiting k gradient. However,  for J~ > ~350 
MPa and T = 50°C, the stress path would be limited by 
the 10 -8 s i gradient for pressure solution, and no 
brittle deformation would occur. Dislocation creep will 
also occur under these deformational conditions, though 
at a very subordinate rate to pressure solution, whereas 
twin gliding would not be initiated. 

At T = 400°C, dislocation creep becomes the domi- 
nant and limiting deformation mechanism at k = 10 -s  
s - l .  Pressure solution will be active as a subordinate 
process at this temperature,  and brittle deformation will 
occur only at extremely low or negative values of J~ or at 
very high (in geological terms) strain rates. 

In this extremely fine-grained limestone, for defor- 
mation occurring at geologically reasonable strain rates 
(~1() -14 to 10 -12 S I), brittle deformation would be 
suppressed at even very low temperatures and Jl values, 
as the various k-dependent deformation mechanisms 
would not permit a significant build up of X/~2. The 
activity of various deformation mechanisms is very de- 
pendent on both mineralogy and grain size. It is specifi- 
cally the very small grain size of the limestone used in 
this example that favors pressure solution and certain 
crystal plastic deformation mechanisms over brittle 
deformational features. Pressure solution and Coble 
creep are very sensitive to grain size (Rutter 1976, 
McClay 1977). If the grain size used for the determi- 
nation of the strain rate gradients for these mechanisms 
is increased from 10 to 100/xm, the respective strain rates 
for the indicated gradients are reduced in value by a 
factor of 10 -3 (Rutter 1976; i.e. the ~; = 10 -s  s -~ gradi- 
ent becomes the/: = 10-~1 s-l  gradient, etc.). Compres- 
sional strength under confining pressure is, in general, 
reduced by an increase in grain size. The critical stress 
for the inception of twinning decreases with increasing 
grain size (Rowe & Rutter 1990), and dislocation gliding 
is relatively insensitive to grain size (Rutter 
1976). 

The specific effect of grain size is illustrated with a 
comparative J - T  deformation mechanism space gener- 
ated for limestone with a grain size of 0.5 mm (Fig. 11). 
The brittle failure envelope (based on experimental data 
for Yule marble, Heard 1968) is about 30% below the 
failure surface for Solenhofen limestone (in terms of 
X/~_). Curves for twin development are based on Fried- 
man (1964) and Jamison & Spang (1976). The strain rate 
values for both the pressure solution and CoNe creep 
gradients will be reduced by a factor of about 10 5. The 
J - T  deformation mechanism space indicates that defor- 
mation in this coarse-grained limestone would occur, at 
upper to middle crustal conditions, by dislocation creep/ 
glide, twinning and brittle failure, with only very minor 
contributions from pressure solution. The development 
of twin lamellae in the calcite wilt provide some record of 
the stress path (e.g. Jamison & Spang 1976, Rowe & 

".'J2' E = , o ~  J-T space 
O0 - J~*' limestone 

'~ / grain size = 0.5mm 

~00 " E =i°~41s .... ' " " E =i°~41s .... ~o~ o~ 

I ...... _. 

.~._~0,o ,00 ".\ [ ~ ' & , ; - ~ ° 7  Jt 

300 

~oo t,. \" T brittle failure 
- -  pressure solution 

. . . . . . . . .  disloc, creep/glide 

. . . . . . . .  twin gliding 

Fig. ] 1. Perspect ive d isplay o f  a J -T  space fo r  l imestone wi th  a grain 

size of 0.5 mm, with slices in the J -Xf~ plane shown for temperatures 
of 50 and 400°C. See text for discussion. 

Rutter 1990) and accommodate a certain amount of 
strain (Groshong 1972), but will not restrict the stress 
path. 

At temperatures of 400°C and greater, brittle defor- 
mation under geologically reasonable strain rates would 
occur in this coarse-grained limestone, as in the finer 
grained limestone, only at extremely low or negative 
values of J1. As the contributions of brittle deformation 
diminish at the higher temperatures,  the three- 
dimensional complexity of J - T  space ceases to provide 
any benefit over the two-dimensional deformation 
mechanism maps of Rutter  (1976), which is fundamen- 
tally a X/~2-Tspace (e.g. Fig. 10b). 

In the stress path discussions of the previous section, it 
was demonstrated that different points on the same 
structure can have radically different stress paths (e.g. 
Fig. 4). In the perspective of these J - T  deformation 
mechanism spaces, it is anticipated that there can also be 
significant variations in the nature of the deformation as 
a function of structural position. 

CONCLUSIONS 

The use of J space, p-q  space or cr space as alternatives 
to the conventional Mohr space presentation for stress 
analysis allows the stress history of a rock to be clearly 
represented and visualized. The stress history, which is 
recorded as a stress path in these various stress spaces, is 
a function of burial and lithification, regional tectonics, 
local structural development,  pore pressure variations, 
etc. The cumulative effect of these factors can produce 
complex stress paths, with resultant stress states that are 
difficult to anticipate and assess in the absence of these 
graphical displays. 

The power and utility of stress space and stress path 
analysis for the structural geologists can be realized only 
if the stress information can be related to mechanisms 
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and expressions of deformation. Deformation mechan- 
ism maps have proven to be very useful for relating 
ductile deformation mechanisms to state conditions, 
whereas brittle deformation is correlated to critical state 
failure envelopes. J - T  space provides a possible format, 
a deformation mechanism space, for linking both brittle 
and ductile deformation mechanisms to the stress- 
temperature history of the rock. The data presently 
available for the development of a deformation mechan- 
ism space for any particular rock type come from a fairly 
limited range of stress and strain-rate conditions. Conse- 
quently, the deformation mechanism spaces presented 
here (Figs. 10 and 11) should be viewed only as proto- 
types. Further studies of both natural and experimental 
rock deformation should provide considerable refine- 
ment of such plots. 

Acknowledgements--This study was supported by NSERC Operating 
Grant OGP0105569 to the author. This paper has distinctly benefited 
from the constructive reviews of Tom Calon, Ramon Loosveld and A. 
A. M. Venmans. 

REFERENCES 

Birch, F. 1966. Elastic constants and compressibility. In: Handbook of  
Physical Constants (edited by Clark, S. P., Jr). Mere. geol. Soc. A m .  
97, 97-173. 

Chester, F. M. 1989. Dynamic recrystallization in semi-brittle faults. J. 
Struct. Geol. 11,847-858. 

Costin, L. S. 1987. Time-dependent deformation and failure. In: 
Fracture Mechanics of  Rock (edited by Atkinson, B. K.). Academic 
Press, London, 167-215. 

Coulomb, C. A. 1776. Essai sur une application des r6gles de maxims 
et minims h quelques probl6mes de statique, relatifs h I'architecture. 
Mdm. Acad. R. Sci. 7,343-382. 

Drucker, D. C. & Prager, W. 1952. Soil mechanics and plastic analysis 
of limit design. Q. Appl. Math. 10, 157-165. 

Flinn, D. 1962. On folding during three-dimensional progressive 
deformation. Q. J. geol. Soc. Lond. 118,385-433. 

Friedman, M. 1964. Petrofabric techniques for the determination of 
principal stress directions in rocks. In: State of  Stress in the Earth's 
Crust (edited by Judd, W. R.). Elsevier, New York, 451-550. 

Gens, A. & Potts, D. M. 1988. Critical state models in computational 
geomechanics. Engng Comput. 5,178-197. 

Griggs, D. & Handin, J. 1960. Observations on fracture and a 
hypothesis of earthquakes. In: Rock Deformation (edited by Griggs, 
D. & Handin, J.). Mem. geol. Soc. Am. 79,347-364. 

Groshong, R. G., Jr. 1972. Strain calculated from twinning in calcite. 
Bull. geol. Soc. Am. 82, 2025-2038. 

Handin, J., Higgs, D. V. & O'Brien, J. K. 1960. Torsion of Yule 
Marble under confining pressure. In: Rock Deformation (edited by 
Griggs, D. & Handin, J.). Mem. geol. Soc. Am. 79, 347-364. 

Handin, J., Hager, R. V., Friedman, M. & Feather, J. N. 1963. 
Experimental deformation of sedimentary rocks under confining 
pressure: pore pressure tests. Bull. Am. Ass. Petrol. Geol. 47,717- 
755. 

Heard, H. C. 1960. Transition from brittle to ductile flow in Solenho- 
fen Limestone as a function of temperature, confining pressure, and 
interstitial fluid pressure. In: Rock Deformation (edited by Griggs, 
D. & Handin, J.). Mem. geol. Soc. Am. 79,193-226. 

Heard, H. C. 1968. Experimental deformation of rocks and the 
problem of extrapolation to nature. In: NSF Advanced Science 
Seminar in Rock Mechanics (edited by Riecker, R. E.). Air Force 
Cambridge Research Laboratories, Bedford, Mass., 439-507. 

Higgs, N. G. & Bradley, J. S. 1986. Stress state, fracture development 
and elastic moduli from microstructural finite element models 
simulating sedimentary burial. Eos 67, 1205. 

Hubbcrt, M. K. & Rubey, W. W. 1959. Mechanics of fluid-filled 
porous solids and its application to overthrust faulting. Bull. geol. 
Soc. Am. 70, 115-166. 

Hvorslev, M. J. 1937. l]ber die Festigkeitseigenschaften gest6rter 
bindiger B6den. Unpublished Ph.D. thesis, Danmarks Naturvi- 
denskabelige Sawfund, Copenhagen. 

Jaeger, J. C. & Cook, N. G. W. 1969. Fundamentals of  Rock 
Mechanics. Chapman & Hall, London. 

Jamison, W. R. & Spang, J. H. 1976. Use of calcite twin lamellae to 
infer differential stress. Bull. geol. Soc. Am. 87, 868-872. 

Jones, M. E. & Addis, M. A. 1986. The application of stress path and 
critical state analysis to sediment deformation. J. Struct. Geol. 8, 
575-580. 

McClay, K. R. 1977. Pressure solution and Coblc creep in rocks and 
minerals. J. geol. Soc. Lond. 134, 57-70. 

Nye, J. F. 1972. Physical Properties of  Crystals. Oxford University 
Press, London. 

Reches, Z. & Dieterich, J. H. 1983. Faulting of rocks in three- 
dimensional strain fields I. Failure of rocks in polyaxial, servo- 
controlled experiments. Tectonophysics 95, l 11-132. 

Rowe, K. J. & Rutter, E. H. 1990. Palaeostress estimation using 
calcite twinning: experimental calibration and application to nature. 
J. Struct. Geol. 12, 1-17. 

Ruttcr, E. H. 1976. The kinetics of rock deformation by pressure 
solution. Phil. Trans. R. Soc. Lond. A283, 203-219. 


